1 Mathematically similar wooden blocks are made in a workshop.

There are small blocks and there are large blocks.

The volume of each small block is $300\,\text{cm}^3$

Given that

the surface area of each small block : the surface area of each large block = 25:36 work out the volume of each large block.

Calculating scale factor for length of the block :

Small block : large block = $\sqrt{25}$: $\sqrt{36}$ = 5 : 6 (1)

Finding volume of large block :

$$\left(\frac{6}{5}\right)^3 \times 300 = 518.4 \text{ cm}^3$$

(Total for Question 1 is 3 marks)

2 A and **B** are two similar solids.

A has a volume of 1836 cm^3 **B** has a volume of 4352 cm^3

B has a total surface area of 1120 cm^2

Work out the total surface area of A.

Scale factor in terms of length:

$$\frac{B}{A} = \frac{\sqrt[3]{4352}}{\sqrt[3]{1836}} = \frac{4}{3}$$

Surface area of A :

$$\frac{\chi}{1120} = \left(\frac{3}{4}\right)^2$$

$$\chi = \left(\frac{3}{4}\right)^2 \times 1120$$

$$\approx 630$$
(1)

630 cm²

(Total for Question 2 is 3 marks)

3 The diagram shows two similar metal statues.

Diagram **NOT** accurately drawn

The volume of statue **B** is 20% less than the volume of statue **A**

The surface area of statue **B** is k% less than the surface area of statue **A**

Work out the value of *k* Give your answer correct to 3 significant figures.

Volume of B = 0.8 Volume of AVolume of BVolume of ATo find length scale factor: $\left(\frac{\text{Volume of }B}{\text{Volume of }A}\right)^{\frac{1}{2}} = \frac{\text{Length of }B}{\text{Length of }A} = (0.8)^{\frac{1}{2}}$ To find area scale factor: $\frac{\text{Area of }B}{\text{Area of }A} = (0.8^{\frac{1}{2}})^{\frac{2}{3}}$ $Area of A = (0.8^{\frac{1}{2}})^{\frac{2}{3}} = 0.8617...$ (1) Surface Area of B = 0.8617... xloo% of Surface Area of A = 86.2% of surface Area of A = 12.8(Total for Question 3 is 4 marks) 4 The three solids A, B and C are similar such that

the surface area of \mathbf{A} : the surface area of $\mathbf{B} = 4:9$

and

the volume of **B** : the volume of $\mathbf{C} = 125 : 343$

Work out the ratio

the height of A : the height of C

Give your ratio in its simplest form.

length $A:B:\sqrt{4}:\sqrt{9}$	
: 2 : 3 (1)	
length $B; C : \sqrt[3]{125} : \sqrt[3]{343}$	
; 5 ; 7 (1)	
A : B : C	
2×5: 3×5	
5×3 : 7×3	
10 : 15 : 21	
	10 : 2.1
$A: C = 10 \cdot 21$ (1)	(Total for Question 4 is 4 marks)

4

5 A and B are two similar vases.

Vase **A** has height 10 cm. Vase **B** has height 15 cm.

The difference between the volume of vase **A** and the volume of vase **B** is 1197 cm^3

Calculate the volume of vase A

Volume A : Volume B =
$$10^3$$
 : 15^3
= 1000 : 3375
 1197
 $3375-1000$
 1197
 3375
 1000 = 1197
 2375
 10
 $= 0.504$
 $0.504 \times 1000 = 504$
 10

(Total for Question 5 is 4 marks)

504

Triangle ABC is similar to triangle PQR

AB = 4 cm PQ = 12 cm RQ = 16.5 cm AC = x cm PR = y cm(a) Calculate the length of *BC*

$$B_{0} = \frac{1}{1/23} \times 16.5 \text{ cm} (1)$$

= 5.5 cm (1)

7 A statue and a model of the statue are mathematically similar.

The statue has a total surface area of $3600 \, \text{cm}^2$ The model has a total surface area of $625 \, \text{cm}^2$

The volume of the model is $750 \, \text{cm}^3$

Work out the volume of the statue.

length scale factor :

3600	6 0	=	<u>12</u> 5	0
625	25			

Volume of statue =
$$\left(\frac{12}{5}\right)^3 \times 750$$
 (1)
= $\frac{1728}{125} \times 750$
= 10368 (1)

10 368 cm³

(Total for Question 7 is 3 marks)

8 A and **B** are two similar vases.

The vases are such that

surface area of vase $\mathbf{B} = \frac{25}{64} \times \text{surface area of vase } \mathbf{A}$

and that

volume of vase \mathbf{A} – volume of vase \mathbf{B} = 541.8 cm³

Calculate the volume of vase ${\bf B}$

scale factor of length
$$B = \sqrt{\frac{25}{64}} A$$

B $= \frac{5}{8} A$ (1)

Volume :
$$(\frac{8}{5})^3 B - B = 541.8$$

 $\frac{512}{125} \theta - B = 541.8$
 $B(\frac{512}{125} - 1) = 541.8$
 $B(3.096) = 541.8$
 $B = 175$ cm³
(Total for Question 8 is 4 marks)